Nonlinearity and the industrial seed oils paradox
Most relationships among variables in nature are nonlinear, frequently taking the form of a J curve. The figure below illustrates this type of curve. In this illustration, the horizontal axis measures the amount of time an individual spends consuming a given dose (high) of a substance daily. The vertical axis measures a certain disease marker – e.g., a marker of systemic inflammation, such as levels of circulating tumor necrosis factor (TNF). This is just one of many measurement schemes that may lead to a J curve.
J-curve relationships and variants such as U-curve and inverted J-curve relationships are ubiquitous, and may occur due to many reasons. For example, a J curve like the one above may be due to the substance being consumed having at least one health-promoting attribute, and at least one health-impairing attribute. The latter has a delayed effect, and ends up overcoming the benefits of the former over time. In this sense, there is no “sweet spot”. People are better off not consuming the substance at all. They should look for other sources of the health-promoting factors.
So what does this have to do with industrial seed oils, like safflower and corn oil?
If you take a look at the research literature on the effects of industrial seed oils, you’ll find something interesting and rather paradoxical. Several studies show benefits, whereas several others hint at serious problems. The problems seem to be generally related to long-term consumption, and to be associated with a significant increase in the ratio of dietary omega-6 to omega-3 fats; this increase appears to lead to systemic inflammation. The benefits seem to be generally related to short-term consumption.
But what leads to the left side of the J curve, the health-promoting effects of industrial seed oils, usually seen in short-term studies?
It is very likely vitamin E, which is considered, apparently correctly, to be one of the most powerful antioxidants in nature. Oxidative stress is strongly associated with systemic inflammation. Seed oils are by far the richest sources of vitamin E around, in the form of both γ-Tocopherol and α-Tocopherol. Other good sources, with much less gram-adjusted omega-6 content, are what we generally refer to as “nuts”. And, there are many, many substances other than vitamin E that have powerful antioxidant properties.
Chris Masterjohn has talked about seed oils and vitamin E before, making a similar point (see here, and here). I acknowledged this contribution by Chris before; for example, in my June 2011 interview with Jimmy Moore. In fact, Chris has gone further and also argued that the vitamin E requirement goes up as body fat omega-6 content increases over time (see comments under this post, in addition to the links provided above).
If this is correct, I would speculate that it may create a vicious feedback-loop cycle, as the increased vitamin E requirement may lead to increased hunger for foods rich in vitamin E. For someone already consuming a diet rich in seed oils, this may drive a subconscious compulsion to add more seed oils to dishes. Not good!
J-curve relationships and variants such as U-curve and inverted J-curve relationships are ubiquitous, and may occur due to many reasons. For example, a J curve like the one above may be due to the substance being consumed having at least one health-promoting attribute, and at least one health-impairing attribute. The latter has a delayed effect, and ends up overcoming the benefits of the former over time. In this sense, there is no “sweet spot”. People are better off not consuming the substance at all. They should look for other sources of the health-promoting factors.
So what does this have to do with industrial seed oils, like safflower and corn oil?
If you take a look at the research literature on the effects of industrial seed oils, you’ll find something interesting and rather paradoxical. Several studies show benefits, whereas several others hint at serious problems. The problems seem to be generally related to long-term consumption, and to be associated with a significant increase in the ratio of dietary omega-6 to omega-3 fats; this increase appears to lead to systemic inflammation. The benefits seem to be generally related to short-term consumption.
But what leads to the left side of the J curve, the health-promoting effects of industrial seed oils, usually seen in short-term studies?
It is very likely vitamin E, which is considered, apparently correctly, to be one of the most powerful antioxidants in nature. Oxidative stress is strongly associated with systemic inflammation. Seed oils are by far the richest sources of vitamin E around, in the form of both γ-Tocopherol and α-Tocopherol. Other good sources, with much less gram-adjusted omega-6 content, are what we generally refer to as “nuts”. And, there are many, many substances other than vitamin E that have powerful antioxidant properties.
Chris Masterjohn has talked about seed oils and vitamin E before, making a similar point (see here, and here). I acknowledged this contribution by Chris before; for example, in my June 2011 interview with Jimmy Moore. In fact, Chris has gone further and also argued that the vitamin E requirement goes up as body fat omega-6 content increases over time (see comments under this post, in addition to the links provided above).
If this is correct, I would speculate that it may create a vicious feedback-loop cycle, as the increased vitamin E requirement may lead to increased hunger for foods rich in vitamin E. For someone already consuming a diet rich in seed oils, this may drive a subconscious compulsion to add more seed oils to dishes. Not good!